
Fixed-Point Designer™
Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Fixed-Point Designer™ Release Notes
© COPYRIGHT 2013–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

R2014a

Data type override and automatic data typing for bus
objects . 2

Derived ranges for complex signals in Simulink 2
cordicsqrt function for fixed-point CORDIC-based square
root functionality . 3

Overflow detection with scaled double data types in
MATLAB Coder projects . 3

Fixed-point ARM Cortex-M code replacement support for
DSP System Toolbox FIR filters 3

Fixed-Point Advisor support for referenced configuration
sets . 3

Enhancements to automated conversion of MATLAB
code . 4

Automatic C compiler setup . 5
More flexible control of dsp.LMSFilter System object
fixed-point settings . 5

Derived ranges for For Each and For Each Subsystem
blocks . 5

R2013b

C99 long long integer data type for embedded code
generation . 8

Model Advisor fixed-point checks with additional coverage
and optimization awareness . 8

fi object as an index in colon expressions and an argument
to numel and bit index functions 9

Improved efficiency of data type internal rules for Lookup
Table blocks . 10

Derived ranges for complex variables in MATLAB Coder
projects . 10

Simplified modeling of single-precision designs 10
Range analysis support on Mac platforms 12
Changes to showInstrumentationResults function
options . 12

iii

Changes to Continuous state-space block family range
analysis support . 12

Enhanced fiaccel support for int64 and uint64
functions . 13

Support for LCC compiler on Microsoft Windows (64-bit)
machines . 13

Warning for use of inexact fi and fimath property
names . 13

Conversion of numeric variables into Simulink.Parameter
objects . 13

Fixed-point conversion test file coverage results 14
Fixed-point conversion workflow supports designs that use
enumerated types . 14

Fixed-point conversion of variable-size data using
simulation ranges . 15

Error checking improvements for bitconcat,
bitandreduce, bitorreduce, bitxorreduce,
bitsliceget functions . 15

Legacy data type specification functions return numeric
objects . 15

numberofelements function being removed in a future
release . 18

R2013a

Product restructuring . 20
Histogram logging in instrumented MATLAB Code
Generation report . 20

fi object in indexing and switch-case expressions 20
zeros, ones, and cast code reuse for floating-point and
fixed-point types . 20

Code generation for x.^n when n is a variable and x is a fi
object . 22

Fixed-Point Advisor support for model reference 22
Automated conversion of floating-point to fixed-point types
in MATLAB Coder projects . 22

Improved autoscaling for models with virtual bus
signals . 23

Data Type Override for MATLAB Function block using
built-in doubles and singles . 23

Instrumentation for arrays of structs 24
File I/O function support . 24

iv Contents

Support for nonpersistent handle objects 24
Load from MAT-files for code acceleration 25
New toolbox functions supported for code acceleration and
generation . 25

Function to be removed in a future release 26
Function being removed . 27

v

vi Contents

R2014a

Version: 4.2

New Features: Yes

Bug Fixes: Yes

1

R2014a

Data type override and automatic data typing for
bus objects

Data type override for bus objects
You can now apply data type override to models and subsystems that use
virtual and non-virtual buses. The bus element types obey the data type
override settings. This capability allows you to:

• Obtain the idealized floating-point behavior of models that use buses.

• Obtain the ideal derived ranges for models that use buses.

• Easily compare the idealized floating-point behavior with the fixed-point
behavior of models that use buses.

• Use data type override to share fixed-point models that use buses with
users who do not have a fixed-point license.

Autoscaling for bus objects
You can autoscale models that use virtual and non-virtual buses. This
capability facilitates fixed-point conversion and optimization of models.
The Fixed-Point Tool automatically proposes fixed-point data types for bus
elements which removes the need to perform manual analysis and conversion
of bus element data types.

For more information, see “Refine Data Types of a Model with Buses Using
Simulation Data”.

Derived ranges for complex signals in Simulink

Using the Fixed-Point Tool, you can now derive ranges for complex signals in
Simulink®. For more information, see “Conversion Using Range Analysis”.

2

cordicsqrt function for fixed-point CORDIC-based square root functionality

cordicsqrt function for fixed-point CORDIC-based
square root functionality

The cordicsqrt function provides a CORDIC-based approximation of square
root for use in fixed-point applications. For more information, see cordicsqrt
and “Compute Square Root Using CORDIC”.

Overflow detection with scaled double data types
in MATLAB Coder projects

The MATLAB® Coder™ Fixed-Point Conversion tool now provides the
capability to detect overflows. At the numerical testing stage in the conversion
process, the tool simulates the fixed-point code using scaled doubles. It
then reports which expressions in the generated code produce values that
would overflow the fixed-point data type. For more information, see “Detect
Overflows Using the Fixed-Point Conversion Tool” and “Detecting Overflows”.

You can also detect overflows when using the codegen function. For more
information, see coder.FixptConfig and “Detect Overflows at the Command
Line”.

These capabilities require a MATLAB Coder license.

Fixed-point ARM Cortex-M code replacement support
for DSP System Toolbox FIR filters

Fixed-point ARM® Cortex®-M code replacement library support is now
available for the Discrete FIR block and the dsp.FIRFilter System object.

These capabilities require a DSP System Toolbox™ license.

Fixed-Point Advisor support for referenced
configuration sets

The Fixed-Point Advisor now supports referenced configuration sets. For
more information, see “Preparing for Data Typing and Scaling”.

3

R2014a

Enhancements to automated conversion of MATLAB
code

R2014a includes the following enhancements to the fixed-point conversion
capability in MATLAB Coder projects.

These capabilities require a MATLAB Coder license.

Support for MATLAB classes
You can now use the MATLAB Coder Fixed-Point Conversion tool to
convert floating-point MATLAB code that uses MATLAB classes. For more
information, see “Fixed-Point Code for MATLAB Classes”.

Generated fixed-point code enhancements
The generated fixed-point code now:

• Uses subscripted assignment (the colon(:) operator). This enhancement
produces concise code that is more readable.

• Has better code for constant expressions. In previous releases, multiple
parts of an expression were quantized to fixed point. The final value of the
expression was less accurate and the code was less readable. Now, constant
expressions are quantized only once at the end of the evaluation. This new
behavior results in more accurate results and more readable code.

For more informations, see “Generated Fixed-Point Code”.

Fixed-point report
In R2014a, when you convert floating-point MATLAB code to fixed-point
C/C++ code, the code generation software generates a fixed-point report
in HTML format. For the variables in your MATLAB code, the report
provides the proposed fixed-point types and the simulation or derived
ranges used to propose those types. For a function, my_fcn, and code
generation output folder, out_folder, the location of the report is
out_folder/my_fcn/fixpt/my_fcn_fixpt_Report.html. If you do not
specify out_folder in the project settings or as an option of the codegen
command, the default output folder is codegen.

4

Automatic C compiler setup

Automatic C compiler setup

In earlier releases, to set up a compiler before using fiaccel to accelerate
MATLAB algorithms, you were required to run mex -setup. Now, the code
generation software automatically locates and uses a supported installed
compiler. You can use mex -setup to change the default compiler. See
“Changing Default Compiler”.

More flexible control of dsp.LMSFilter System object
fixed-point settings

For all dsp.LMSFilter System object fixed-point settings, you can now specify
independent fixed-point data types.

This capability requires a DSP System Toolbox license.

Derived ranges for For Each and For Each Subsystem
blocks

Range analysis supports For Each and For Each Subsystem blocks, with the
following limitations:

• When For Each Subsystem contains another For Each Subsystem, not
supported.

• When For Each Subsystem contains one or more Simulink Design
Verifier™ Test Condition, Test Objective, Proof Assumption, or Proof
Objective blocks, not supported.

5

R2013b

Version: 4.1

New Features: Yes

Bug Fixes: Yes

7

R2013b

C99 long long integer data type for embedded code
generation

If your target hardware and your compiler support the C99 long long integer
data type, you can use this data type for code generation. Using long long
results in more efficient generated code that contains fewer cumbersome
operations. Multi-line fixed-point helper functions can be replaced by simple
expressions. This data type also provides more accurate simulation results for
fixed-point and integer simulations. If you are using Microsoft® Windows®

(64-bit), using long long improves performance for many workflows including:

• Using Accelerator mode in Simulink

• Working with Stateflow® software

• Generating C code with Simulink Coder

• Accelerating fixed-point code using fiaccel

• Generating C code and MEX functions with MATLAB Coder

For more information about enabling long long in Simulink, see the Enable
long long and Number of bits: long long configuration parameters on
the Hardware Implementation Pane.

For more information about enabling long long for MATLAB Coder, see
coder.HardwareImplementation.

Model Advisor fixed-point checks with additional
coverage and optimization awareness

The Model Advisor fixed-point checks now cover additional blocks in base
Simulink and System Toolboxes. The checks also now include the MATLAB
Function block, System objects, Stateflow, and fi objects. These improved
checks consider model settings such as hardware configuration and code
generation settings. These updated checks also avoid false negative results.

These checks require an Embedded Coder® license.

For more information, see:

8

http://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
http://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html

fi object as an index in colon expressions and an argument to numel and bit index functions

• Identify blocks that generate expensive rounding code

• Identify questionable fixed-point operations

• Identify blocks that generate expensive fixed-point and saturation code

fi object as an index in colon expressions and an
argument to numel and bit index functions

fi object as an index in colon expressions
You can now use fi objects in colon expressions. When you use fi in a colon
expression, all colon operands must have integer values. See the fi and colon
reference pages for examples.

fi objects as bit index input argument
The bitget, bitset, bitsliceget, bitandreduce, bitorreduce, and
bitxorreduce functions now accept fi objects as the bit index argument.

fi objects as shift-value input argument
The bitsra, bitsrl, bitsll, bitrol, and bitror functions now accept fi
objects as the shift-value input argument. You can use fi and built-in data
type shift values interchangeably in MATLAB functions. This new capability
facilitates fixed-point conversion.

numel function support for fi inputs
Effective R2013b, the numel function returns the number of elements in a fi
array. Using numel in your MATLAB code returns the same result for built-in
types and fi objects. Use numel to write data-type independent MATLAB code
for array handling; you no longer need to use the numberofelements function.

The numel function is supported for simulation and code generation and with
the MATLAB Function block in Simulink.

For more information, see numel.

9

http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
http://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fi.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/colon.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitget.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitset.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsra.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsrl.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsll.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitrol.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitror.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013b

Improved efficiency of data type internal rules for
Lookup Table blocks

Blocks in the Lookup Tables library have a new internal rule for fixed-point
data types to enable faster hardware instructions for intermediate
calculations (with the exception of the Direct Lookup Table (n-D), Prelookup
and Lookup Table Dynamic blocks). To use this new rule, select Speed for the
Internal Rule Priority parameter in the dialog box. To use the R2013a
internal rule, select Precision.

Derived ranges for complex variables in MATLAB
Coder projects

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can
now derive ranges for complex variables. For more information, see Propose
Data Types Based on Derived Ranges. This capability requires a MATLAB
Coder license.

Simplified modeling of single-precision designs
Compatibility Considerations: Yes

Fixed-Point Designer™ now uses strict single-precision algorithms for
operations between singles and integer or fixed-point data types. Operations,
such as cast, multiplication and division, use single-precision math instead
of introducing higher-precision doubles for intermediate calculations in
simulation and code generation. You no longer have to explicitly cast integer
or fixed-point inputs of these operations to single precision. To detect the
presence of double data types in your model, use the Model Advisor Identify
questionable operations for strict single-precision design check.

Compatibility Considerations

In R2013b, for both simulation and code generation, Fixed-Point Designer
avoids the use of double data types to achieve strict single design for
operations between singles and integers or fixed-point types. In previous
releases, Fixed-Point Designer used double data types in intermediate

10

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1

Simplified modeling of single-precision designs

calculations for higher precision. You might see a difference in numerical
behavior of an operation between earlier releases and R2013b.

For example, when you cast from a fixed-point or integer data type to single
or vice versa, the type used for intermediate calculations can significantly
affect numerical results. Consider:

• Input type: ufix128_En127

• Input value: 1.999999999254942 — Stored integer value is (2^128
-2^100).

• Output type: single

Release Calculation performed by Fixed-Point Designer Output
Result

Design Goal

R2013b Y = single(2^-127) * single(2^128-2^100)
= single(2^-127) * Inf

Inf Strict singles

Previous
releases

Y = single(double(2^-127) * double(2^128 -
2^100))
= single(2^-127 * 3.402823656532e+38)

2 Higher-precision
intermediate
calculation

There is also a difference in the generated code. Previously, Fixed-Point
Designer allowed the use of doubles in the generated code for a mixed
multiplication that used single and integer types.

m_Y.Out1 = (real32_T)((real_T)m_U.In1*(real_T)m_U.In2);

In R2013b, it uses strict singles.

m_Y.Out1=(real32_T)m_U.In1*m_U.In2;

You can revert to the numerical behavior of previous releases, if necessary.
To do so, insert explicit casting from integer and fixed-point data types to
doubles for the inputs of these operations.

11

R2013b

Range analysis support on Mac platforms

You can now perform derived range analysis of your model on Mac platforms.
For more information, see Conversion Using Range Analysis.

Changes to showInstrumentationResults function
options

New option to suppress display of MATLAB code
When generating a printable instrumentation report, you can now choose to
display only the tables that show information about logged variables. Used
with the -printable option, the -nocode option suppresses display of the
MATLAB code. Displaying only the logged variable information is useful for
large projects with many lines of code.

Removal of -browser option
The showInstrumentationResults function -browser option has been
removed. Use the -printable option instead. The -printable option creates
a printable report and opens it in the system browser.

For more information, see showInstrumentationResults.

Changes to Continuous state-space block family
range analysis support
Compatibility Considerations: Yes

The Continuous Simulink blocks State-Space, Transfer Fcn, and Zero-Pole are
not supported and not stubbable for range analysis. For more information on
blocks that are supported for range analysis, see Supported and Unsupported
Simulink Blocks.

Compatibility Considerations

If you have a model that contains one or more continuous State-Space,
Transfer Fcn, or Zero-Pole blocks, your model is incompatible with range

12

http://www.mathworks.com/help/releases/R2013b/fixedpoint/conversion-using-range-analysis.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/simulink-block-support.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/simulink-block-support.html

Enhanced fiaccel support for int64 and uint64 functions

analysis. Consider analyzing smaller portions of your model to work around
this incompatibility.

Enhanced fiaccel support for int64 and uint64
functions

The fiaccel function now supports int64 and uint64 with fi inputs.

Support for LCC compiler on Microsoft Windows
(64-bit) machines

If you are using Microsoft Windows (64-bit), LCC-64 is now available as the
default compiler. You no longer have to install a separate compiler to perform
fixed-point acceleration using fiaccel.

Warning for use of inexact fi and fimath property
names
Compatibility Considerations: Yes

All fi and fimath property names are case sensitive and require that you use
the full property names. Effective R2013b, if you use inexact property names,
Fixed-Point Designer generates a warning.

Compatibility Considerations

To avoid seeing warnings for fi and fimath properties, update your code so
that it uses the full names and correct cases of all these properties. The full
names and correct cases of the properties appear when you display a fi or
fimath object on the MATLAB command line.

Conversion of numeric variables into
Simulink.Parameter objects

You can now convert a numeric variable into a Simulink.Parameter object
using a single step.

13

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/int64.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/uint64.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fiaccel.html

R2013b

myVar = 5; % Define numerical variable in base workspace

myObject = Simulink.Parameter(myVar); % Create data object and assign variable value to data object value

Previously, you did this conversion using two steps.

myVar = 5; % Define numerical variable in base workspace

myObject = Simulink.Parameter; % Create data object

myObject.Value = myVar; % Assign variable value to data object value

Fixed-point conversion test file coverage results

The MATLAB Coder Fixed-Point Conversion tool now provides test file
coverage results. After simulating your design using a test file, the tool
provides an indication of how often the code is executed. If you run multiple
test files at once, the tool provides the cumulative coverage. This information
helps you determine the completeness of your test files and verify that they
are exercising the full operating range of your algorithm. The completeness of
the test file directly affects the quality of the proposed fixed-point types.

This capability requires a MATLAB Coder license.

For more information, see Code Coverage.

Fixed-point conversion workflow supports designs
that use enumerated types

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you
can now propose data types for enumerated data types using derived and
simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Derived
Ranges and Propose Fixed-Point Data Types Based on Simulation Ranges.
This capability requires a MATLAB Coder license.

14

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/test-file-coverage.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html

Fixed-point conversion of variable-size data using simulation ranges

Fixed-point conversion of variable-size data using
simulation ranges

Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can
propose data types for variable-size data using simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on
Simulation Ranges. This capability requires a MATLAB Coder license.

Error checking improvements for bitconcat,
bitandreduce, bitorreduce, bitxorreduce, bitsliceget
functions

The bitconcat, bitandreduce, bitorreduce, bitxorreduce, and
bitsliceget functions now check that all input arguments are real. If any
inputs are complex, these functions generate an error.

The bitconcat function now generates an error in the unary syntax case,
bitconcat(a), if the input argument a is a scalar or is empty. To use
bitconcat with one input argument, the argument must have more than one
array element available for bit concatenation (that is, length(a)>1).

Legacy data type specification functions return
numeric objects
Compatibility Considerations: Yes

In previous releases, the following functions returned a MATLAB structure
describing a fixed-point data type:

• float

• sfix

• sfrac

• sint

• ufix

• ufrac

15

http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitconcat.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/float.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sfrac.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/sint.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufix.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/ufrac.html

R2013b

• uint

Effective R2013b, they return a Simulink.NumericType object. If you have
existing models that use these functions as parameters to dialog boxes, the
models continue to run as before and there is no need to change any model
settings.

These functions do not offer full Data Type Assistant support. To benefit
from this support, use fixdt instead.

Function Return Value
in Previous
Releases
— MATLAB
structure

Return Value Effective R2013b — NumericType

float('double') Class: 'DOUBLE' DataTypeMode: 'Double'

float('single') Class: 'SINGLE' DataTypeMode: 'Single'

sfix(16) Class: 'FIX'
IsSigned: 1
MantBits: 16

DataTypeMode: 'Fixed-point: unspecified scaling'
Signedness: 'Signed'
WordLength: 16

ufix(7) Class: 'FIX'
IsSigned: 0
MantBits: 7

DataTypeMode: 'Fixed-point: unspecified scaling'
Signedness: 'Unsigned'
WordLength: 7

sfrac(33,5) Class: 'FRAC'
IsSigned: 1
MantBits: 33

GuardBits: 5

DataTypeMode: 'Fixed-point: binary point scaling'
Signedness: 'Signed'
WordLength: 33

FractionLength: 27

ufrac(44) Class: 'FRAC'
IsSigned: 0
MantBits: 44

GuardBits: 0

DataTypeMode: 'Fixed-point: binary point scaling'
Signedness: 'Unsigned'
WordLength: 44

FractionLength: 44

16

http://www.mathworks.com/help/releases/R2013b/simulink/slref/uint.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.numerictype.html
http://www.mathworks.com/help/releases/R2013b/simulink/slref/fixdt.html

Legacy data type specification functions return numeric objects

Function Return Value
in Previous
Releases
— MATLAB
structure

Return Value Effective R2013b — NumericType

sint(55) Class: 'INT'
IsSigned: 1
MantBits: 55

DataTypeMode: 'Fixed-point: binary point scaling'
Signedness: 'Signed'
WordLength: 55

FractionLength: 0

uint(77) Class: 'INT'
IsSigned: 0
MantBits: 77

DataTypeMode: 'Fixed-point: binary point scaling'
Signedness: 'Unsigned'
WordLength: 77

FractionLength: 0

Compatibility Considerations

MATLAB Code

MATLAB code that depends on the return arguments of these functions
being a structure with fields named Class, MantBits or GuardBits no longer
works correctly. Change the code to access the appropriate properties of a
NumericType object, for example, DataTypeMode, Signedness, WordLength,
FractionLength, Slope and Bias.

C Code

Update C code that expects the data type of parameters to be a legacy
structure to handle NumericType objects instead. For example, if you
have S-functions that take legacy structures as parameters, update these
S-functions to accept NumericType objects.

MAT-files

Effective R2013b, if you open a Simulink model that uses a MAT-file that
contains a data type specification created using the legacy functions, the model
uses the same data types and behaves in the same way as in previous releases

17

R2013b

but Simulink generates a warning. To eliminate the warning, recreate the
data type specifications using NumericType objects and save the MAT-file.

You can use the fixdtupdate function to update a data type specified using
the legacy structure to use a NumericType. For example, if you saved a data
type specification in a MAT-file as follows in a previous release:

oldDataType = sfrac(16);
save myDataTypeSpecification oldDataType

use fixdtUpdate to recreate the data type specification to use NumericType:

load DataTypeSpecification
fixdtUpdate(oldDataType)

ans =

NumericType with properties:

DataTypeMode: 'Fixed-point: binary point scaling'
Signedness: 'Signed'
WordLength: 16

FractionLength: 15
IsAlias: 0

DataScope: 'Auto'
HeaderFile: ''

Description: ''

For more information, at the MATLAB command line, enter:

fixdtUpdate

numberofelements function being removed in a
future release

The numberofelements function will be removed in a future release of
Fixed-Point Designer software. Use numel instead.

18

http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numberofelements.html
http://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013a

Version: 4.0

New Features: Yes

Bug Fixes: Yes

19

R2013a

Product restructuring

The Fixed-Point Designer product replaces two pre-existing products:
Fixed-Point Toolbox™ and Simulink Fixed Point™. You can access archived
documentation for both products on the MathWorks® Web site.

Histogram logging in instrumented MATLAB Code
Generation report

The buildInstrumentedMex and showInstrumentationResults
instrumentation functions now can generate log2 histograms. A histogram is
generated for each named and intermediate variable and for each expression
in your code. The code generation report Variables tab includes a link to
the histogram for each variable. You can use this histogram to determine
the word and fraction lengths for your fixed-point values. Refer to the
buildInstrumentedMex and showInstrumentationResults reference pages
for information.

fi object in indexing and switch-case expressions

Effective this release, you can use fi objects as indices to arrays of built-in
types and fi types. You can also use fi objects in switch-case expressions.
These changes let you use fi objects without having to convert them. See
the fi reference page for examples.

zeros, ones, and cast code reuse for floating-point
and fixed-point types

The zeros, ones, and cast functions now work with fixed-point data types
as well as built-in data types. The functions can now return an output
whose class matches that of a specified numeric variable or fi object. For
built-in data types, the output assumes the numeric data type, sparsity,
and complexity (real or complex) of the specified numeric variable. For fi
objects, the output assumes the numerictype, complexity (real or complex),
and fimath of the specified fi object.

For example:

20

 http://www.mathworks.com/help/doc-archives.html
 http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fi.html

zeros, ones, and cast code reuse for floating-point and fixed-point types

>> a = fi([],1,24,12);
>> c = cast(pi,'like',a)

c =

3.1416

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

>> z = zeros(2,3,'like',a)

z =

0 0 0
0 0 0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

>> o = ones(2,3,'like',a)

o =

1 1 1
1 1 1

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 24

FractionLength: 12

This capability allows you to cleanly separate algorithm code in MATLAB
from data type specifications. Using separate data type specifications enables
you to:

21

R2013a

• Reuse your algorithm code with different data types.

• Switch easily between fixed-point and floating-point data types to compare
fixed-point behavior to a floating-point baseline.

• Try different fixed-point data types to determine their effect on the
behavior of your algorithm.

• Write clean, readable code.

For more information, see Implement FIR Filter Algorithm for Floating-Point
and Fixed-Point Types using cast and zeros.

Code generation for x.^n when n is a variable and
x is a fi object

If the output type can be derived from the input settings, the mpower and
power functions no longer require a constant exponent input. For more
information, see mpower and power.

Fixed-Point Advisor support for model reference

The Fixed-Point Advisor now performs checks on referenced models. It
checks the entire model reference hierarchy against fixed-point guidelines.
The Advisor also provides guidance about model configuration settings and
unsupported blocks to help you prepare your model for conversion to fixed
point.

Automated conversion of floating-point to fixed-point
types in MATLAB Coder projects

You can now convert floating-point MATLAB code to fixed-point C code using
the fixed-point conversion capability in MATLAB Coder projects. You can
choose to propose data types based on simulation range data, static range
data, or both.

Note You must have a MATLAB Coder license.

22

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/mpower.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/power.html

Improved autoscaling for models with virtual bus signals

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.

• Propose word lengths based on default fraction lengths.

• Optimize whole numbers.

• Specify safety margins for simulation min/max data.

• Validate that you can build your project with the proposed data types.

• Test numerics by running the test file with the fixed-point types applied.

• View a histogram of bits used by each variable.

For more information, see Propose Fixed-Point Data Types Based on
Simulation Ranges and Propose Fixed-Point Data Types Based on Derived
Ranges.

Improved autoscaling for models with virtual bus
signals

Autoscaling with the Fixed-Point Tool now handles data type constraints for
virtual buses that do not have any associated bus objects. The data type
proposals take into account the constraints introduced by these bus signals.

This improved autoscaling reduces data type mismatch errors. It also enables
the Fixed-Point Tool to provide additional diagnostic information when you
accept autoscaling proposals. For more information, see Shared Data Type
Summary.

Data Type Override for MATLAB Function block using
built-in doubles and singles
Compatibility Considerations: Yes

The data type override rules for MATLAB Function block input signals and
parameters have changed. If the input signals and parameters are double
or single, and you specify data type override to be Double or Single, the
overridden data types are now built-in double or built-in single, not fi
double and fi single as in previous releases. If the input signals and

23

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-simulation-ranges.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-simulation-ranges.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/working-with-the-fixed-point-tool.html#br18ikk-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/working-with-the-fixed-point-tool.html#br18ikk-3

R2013a

parameters are fi objects or fixed-point signals, and you specify data type
override to be Double or Single, the overridden data types are fi double
and fi single as in previous releases. For more information, see MATLAB
Function Block with Data Type Override.

Compatibility Considerations

If you have MATLAB Function block code from previous releases that contains
special cases for fi double or fi single, and you specify data type override
to be Double or Single, you might have to update this code to handle built-in
double and single.

Instrumentation for arrays of structs

The buildInstrumentedMex and showInstrumentationResults
instrumentation functions now show instrumentation results for arrays of
structs. Each field of each struct is logged and appears in the code generation
report on the Variables tab.

File I/O function support

The following file I/O functions are now supported for code acceleration and
generation:

• fclose

• fopen

• fprintf

To view implementation details, see Functions Supported for Code
Acceleration or Generation.

Support for nonpersistent handle objects

You can now accelerate code using fiaccel for local variables that contain
references to handle objects or System objects. In previous releases,

24

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html

Load from MAT-files for code acceleration

accelerating code for these objects was limited to objects assigned to persistent
variables.

Load from MAT-files for code acceleration

fiaccel now supports a subset of the load function for loading run-time
values from a MAT-file. It also provides a new function, coder.load, for
loading compile-time constants. This support facilitates code generation from
MATLAB code that uses load to load constants into a function. You no longer
have to manually type in constants that were stored in a MAT-file.

To view implementation details for the load function, see Functions
Supported for Code Acceleration or Generation.

New toolbox functions supported for code
acceleration and generation

To view implementation details, see Functions Supported for Code
Acceleration or Generation.

Bitwise Operation Functions

• flintmax

Computer Vision System Toolbox Classes and Functions

• binaryFeatures

• insertMarker

• insertShape

Data File and Management Functions

• computer

• fclose

• fopen

• fprintf

25

http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/coder.load.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
http://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html

R2013a

• load

Image Processing Toolbox Functions

• conndef

• imcomplement

• imfill

• imhmax

• imhmin

• imreconstruct

• imregionalmax

• imregionalmin

• iptcheckconn

• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac

• ispc

• isunix

String Functions

• strfind

• strrep

Function to be removed in a future release
Compatibility Considerations: Yes

The saveglobalfimathpref will be removed in a future release.

26

http://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
http://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
http://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
http://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
http://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strfind.html
http://www.mathworks.com/help/releases/R2013a/matlab/ref/strrep.html

Function being removed

Compatibility Considerations

Do not save globalfimath as a MATLAB preference. If you have previously
saved globalfimath as a MATLAB preference, use removeglobalfimathpref
to remove it.

Function being removed
Compatibility Considerations: Yes

The emlmex function has been removed.

Compatibility Considerations

The emlmex function generates an error in R2013a. Use fiaccel instead.

27

http://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fiaccel.html

	toc
	R2014a
	Data type override and automatic data typing for bus objects
	Data type override for bus objects
	Autoscaling for bus objects

	Derived ranges for complex signals in Simulink
	cordicsqrt function for fixed-point CORDIC-based square root fun
	Overflow detection with scaled double data types in MATLAB Coder
	Fixed-point ARM Cortex-M code replacement support for DSP System
	Fixed-Point Advisor support for referenced configuration sets
	Enhancements to automated conversion of MATLAB code
	Support for MATLAB classes
	Generated fixed-point code enhancements
	Fixed-point report

	Automatic C compiler setup
	More flexible control of dsp.LMSFilter System object fixed-point
	Derived ranges for For Each and For Each Subsystem blocks

	R2013b
	C99 long long integer data type for embedded code generation
	Model Advisor fixed-point checks with additional coverage and op
	fi object as an index in colon expressions and an argument to nu
	fi object as an index in colon expressions
	fi objects as bit index input argument
	fi objects as shift-value input argument
	numel function support for fi inputs

	Improved efficiency of data type internal rules for Lookup Table
	Derived ranges for complex variables in MATLAB Coder projects
	Simplified modeling of single-precision designs
	Range analysis support on Mac platforms
	Changes to showInstrumentationResults function options
	New option to suppress display of MATLAB code
	Removal of -browser option

	Changes to Continuous state-space block family range analysis su
	Enhanced fiaccel support for int64 and uint64 functions
	Support for LCC compiler on Microsoft Windows (64-bit) machines
	Warning for use of inexact fi and fimath property names
	Conversion of numeric variables into Simulink.Parameter objects
	Fixed-point conversion test file coverage results
	Fixed-point conversion workflow supports designs that use enumer
	Fixed-point conversion of variable-size data using simulation ra
	Error checking improvements for bitconcat, bitandreduce, bitorre
	Legacy data type specification functions return numeric objects
	numberofelements function being removed in a future release

	R2013a
	Product restructuring
	Histogram logging in instrumented MATLAB Code Generation report
	fi object in indexing and switch-case expressions
	zeros, ones, and cast code reuse for floating-point and fixed-po
	Code generation for x.^n when n is a variable and x is a fi obje
	Fixed-Point Advisor support for model reference
	Automated conversion of floating-point to fixed-point types in M
	Improved autoscaling for models with virtual bus signals
	Data Type Override for MATLAB Function block using built-in doub
	Instrumentation for arrays of structs
	File I/O function support
	Support for nonpersistent handle objects
	Load from MAT-files for code acceleration
	New toolbox functions supported for code acceleration and genera
	Bitwise Operation Functions
	Computer Vision System Toolbox Classes and Functions
	Data File and Management Functions
	Image Processing Toolbox Functions
	Interpolation and Computational Geometry
	MATLAB Desktop Environment Functions
	String Functions
	Function to be removed in a future release
	Function being removed

